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PREFACE

The model investigation reported herein was authorized by the Office,
Chief of Engineers (OCE), US Army, on 4 March 1976, at the request of the
US Army Engineer District, Louisville (ORL).

The study was conducted periodically from May 1978 to May 1983 as funds
were made available and as major design decisions were made. The work was

conducted by personnel of the Hydraulics Laboratory of the US Army Engineer

Waterways Experiment Station (WES) under the direction of Messrs. H. B.
Simmons, Chief of the Hydraulics Laboratory, and J. L. Grace, Jr., Chief of
the Structures Division, and under the direct supervision of Mr. N. R. Oswalt,
Chief of the Spillways and Channels Branch. The engineers in charge of the
model were Messrs, E. D, Rothwell and B. P. Fletcher, Spillways and Channels
Branch. The report was prepared by Mr, Fletcher and edited by Mrs. Marsha C.
Gay, Information Technology Laboratory, WES. The following personnel are
acknowledged for thelr special efforts on this project: Messrs. H. C.

Greer ITI and S. W. Guy, Instrumentation Services Division, WES; and E. B.
Williams and M. J. Tickell, Engineering and Construction Services Division,
WES.

During the course of the investigation, Messrs. Jack Robertson and Sam
Powell, OCE; Laszlo Varga, US Army Engineer Division, Ohio River; and Steve
Michel, Jim Lapsley, Larry Curry, David Beatty, Byron McClellan, and Bill
Brown, ORL, visited WES to discuss the program of model tests, observe the
model in operation, and correlate test results with design studies.

COL Dwayne G. Lee, CE, is the Commander and Director of WES.

Dr. Robert W. Whalin is the Technical Director.
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CONVERSION FACTORS, NON-SI TO ST (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to ST A

(metric) units as follows:

Multiply By To Obtain 7
acre-feet 1,233,489 cubic metres
cubic feet 0.028 cubic metres ‘
degrees (angle) 0.01745329 radians ::'
feet 0.305 metres et
feet of water (39.2°F) 2,988.98 pascals
inches 25.4 millimetres o
miles (US statute) 1.609 kilometres v
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POND CREEK PUMPING STATION
SOUTHWESTERN JEFFERSON COUNTY, KENTUCKY

Hydraulic Model Investigation

PART T: TINTRODUCTION

The Prototype

1. The proposed Pond Creek pumping station for the Southwestern Jeffer-
son County local flood protection project is located on the east bank of the
Ohio River about 50 miles* west of Frankfort, Kentucky (Figure 1).

2. The Pond Creek pumping station and gravity flow structure form the

final link in the Southwestern Jefferson County local flood protection proj-

&
ect. The pumping station consists of four bays, two on either side of the

gravity flow structure (Plates 1-4). A trashrack is installed in each pump
bay to prevent debris from entering the pump intakes.

3. The pumping station's four vertical pumps have an average total
capacity of 4,100 cfs against hydrostatic heads from 8 to 27 ft. Storage of
13,200 acre-ft is provided between the pump starting elevation** of 421.0 ft
and the 100-year design el of 432.0. The pumps discharge into flumes at the

back of the combined structure which discharge into the stilling basin. Pump

discharge always occurs under submerged stilling basin conditions.

4., The gravity flow structure consists of an open-channel flow struc-
ture (Plates 1-4) and tainter gate to maintain the pool, which discharges into
a stilling basin.

5. The tainter gate is electronically controlled to permit regulation
of the lake level and discharge into the stilling basin. The stilling basin
width (54 ft) is based on a design velocity of 12.0 fps over the end sill with
tailwater at el 412.5. The length of the basin (100 ft) is about 3.5 times

D2 (theoretical sequent depth required for a hydraulic jump).

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.

**x All elevations (el) and stages cited herein are in feet referred to the
National Geodetic Vertical Datum (NGVD).
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6. The exit channel is lined with riprap and has a 54~ft bottom width
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Purpose and Scope of Model Study
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7. The model study was conducted to evaluate the hydraulic characteris-
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tics and develop modifications required for a satisfactory design of the ap-
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proach channel, sump, gravity outlet, and exit channel. Tests were also |
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conducted to determine the size and extent of rock protection required down-
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stream from the gravity outlet, The model provided information necessary for
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development of a design that will provide satisfactory hydraulic performance
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PART II: THE MODELS

Description

8. Initially, the sump and gravity flow outlet were designed to be
separate, and separate models were used to investigate the sump and gravity
flow outlet.

9. The model to investigate the sump (Figure 2a) was constructed to a
linear scale of 1:20 and reproduced a 700-ft length by 700-ft width of the
approach channel, sump, and five pump intakes. Flow through each pump intake
was provided by individual suction pumps that permitted simulation of various
flow rates through one or more intakes.

10. The model to investigate the gravity flow section was also con-
structed to a linear scale of 1:20 and reproduced a 600-ft-long and 500-ft-
wide area of approach (Figure 2b), the gravity flow section, discharge
conduit, stilling basin, and a 400~ft-long and 500-ft-wide exit channel
(Figure 2c).

11. Following tests of a separate gravity flow outlet and sump, the sump
model was modified to enable investigation of a 1:20-scale, combined gravity
flow outlet and sump (Figures 2d and 2e).

12. The pump intakes and a portion of the model were transparent to per-
mit observation of subsurface and surface vortices, current patterns, and
turbulence, A stage C, D, or E vortex (Figure 3) was considered unacceptable.
A stage E vortex is shown in Figure 4. Pressure fluctuations at each pump
intake were measured by 8.0-in.-diam (prototype) electronic pressure cells
(Figures 4 and 5) flush with *he floor of the sump directly below the center
line of the pump column. Pressure fluctuations in excess of 3.0 ft (proto-
type) were considered unacceptable. Swirl in the pump intakes was measured by
vortimeters (free-wheeling propellers with zero pitch blades) located inside
each pump intake at the approximate position of the prototype pump propeller
(Figure 4). Propeller rotation in excess of 2 rpm (prototype) was considered
unacceptable.

13. Water used in the models was recycled and discharges were measured
with venturi and turbine flowmeters. Water-surface elevations were measured
with staff and point gages. Velocities were measured with pitot tubes and

electromagnetic velocity probes. Current patterns were determined by
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d. Combined sump and gravity flow intake

Y Figure 2. (Sheet 2 of 3)
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Figure 2. (Sheet 3 of 3)
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Figure 4. Vortimeter and pressure cell ':
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14. The
criteria, were

the dimensions
Dimension
Length

Area

Velocity
Discharge

Time

Pressure

Weight

| «a—PUMP INTAKE

), _

- [ f=-PRESSURE CELL

PRESSURE CELL
DIAM=8" (PROTOTYPE)

ELEVATION

Figure 5. Pressure cell location

dye injected into the water and confetti sprinkled on the water

Interpretation of Model Results

accepted equations of hydraulic similitude, based upon Froude
used to express the following mathematical relations between
and hydraulic quantities of the models and prototypes:

Scale Relation

Ratio Model:Prototype

L =1L 1:20
r r

2
A =L 1:400
r r
v = 1l/? 1:4.47
r r
q = 13/? 1:1,789
r Y
T = /2 1:4.47
r Y
P =1 1:20
r r
W= 1] 1:8,000
r r
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PART III: TEST RESULTS

15. Initially, the two structures were to be located several hundred
feet apart to ensure symmetrical inflow to the pumping station sump. Initial
model tests were conducted with separate 1:20-scale models of the gravity flow
outlet and the pumping station sump (Figures 2a, b, and c).

16. Model tests showed that the sump for the pumping plant functioned
well; however, the gravity structure required an expensive wing wall designed
to prevent vortex development (Photo 1) during major floods. Structural
studies in the prototype showed that the wing walls would be expensive and
difficult to build.

Scheme A

17. Based on high projected costs for the separate structures and dis-
cussions among personnel of the US Army Engineer District, Louisville, US Army
Engineer Waterways Experiment Station (WES), and US Army Engineer Division,
Ohio River, it was decided to investigate the feasibility of an over/under
pumping and gravity flow scheme. The gravity control was located below the
sump.

Sump

18. The Scheme A type 1 sump (Figure 6) appeared to be satisfactory for
sump water elevations equal to or higher than 426.0 ft. However, unsymmetri-
cal flow distribution was later observed inside the pump bays. The submer-
gence available with sump water surface at el 426.0 appeared to be sufficient
to negate potential undesirable flow characteristics that are normally gener-
ated by uneven lateral flow distribution to the pump intakes, At the minimum
anticipated sump water-surface elevation (421.0 ft), adverse flow distribution
and severe surface vortices were observed near the pumps as shown in
Plates 5-7. Flow performance observed in the type 1 design sump with various
water-surface elevations and combinations of pumps operating is indicated by
pressure fluctuations, swirl, and vortex development presented in Table 1.

The performance indicators presented in Table 1 show that with sump water
surface at el 421.0, air-entraining vortices are the primary undesirable
hydraulic characteristic.

19. Modifications in the approach to reduce the unsymmetrical current

13
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Additional

ioure AL Combined pumping station and gravity control, Scheme A

and associated vortices in the pump bavs were not considered
Fovorre to develop a satisfactorv design were directed toward
the pump bavs.

Tnitiallv a false backwall, as shown in Figure 7, was installed

“t Irom the edge of the suction bell {Scheme A tvpe 2 design
t3 indicated that the false backwall with a top at el 421.0 was
Al with sump water surface at el 421.0.

tests conducted with the top of the false backwall

‘arious clevations indicated that it was most effective with the
at el 4260 or higher (Scheme A tvpe 3 design sump), as shown in

Sodramlic characteristics in the sump would be similar with the

located either 0.25 ft from the false backwall or

saction hell

'

the aetual backwall,  Although the Scheme A tvpe 3 design sump

improvement in hvdraulic performance, occasional sur-

<icns otase © vortices) developed near the pump column.
crioms sizes of vortex suppressors designed to attenuate or
e develonment by ogenerating small-scale surface turbulence were

nositions upstream from the pump columns,  Test
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Figure 7. Scheme A type 2 sump
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$
e
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‘?:
\: results indicated that 3-ft-high vortex suppressors were most effective when
1,3 positioned as shown in Plate 8 (Scheme A type 4 design sump). The Scheme A
{’ tvpe 4 design sump provided satisfactory flow conditions in the sump for all
'.' anticipated water-surface elevations and combinations of pumps operating.
:&: Performance indicators obtained with the type 4 sump design (Plate 8) are
tabulated in Table 2.
; 23. The Louisville District determined that it would be structurally
?1 desirable to locate a pier in the center of each pump bay (type 5 sump), shown
A in Figure 9 and Plate 9. Tests indicated no significant change in hydraulic
a’ performance due to the piers., The magnitude and direction of currents ap-
" proaching the pump intakes in the approach and along the approach training
o wall for minimum anticipated sump at el 421.0 and maximum pumping discharge of
(: 4,100 cfs are shown in Plates 9 and 10, respectively. Riprap (thickness =
‘E 12 in. and average size of stone (dSO) = 6 in.) in the approach (Figure 9) was
2 stable for all anticipated pumped flows and headwater elevations. Various
,3 flow conditions taken with a 100-sec (prototype) exposure time are shown in
:&3 Photo 2,
;
3
"
s

~O

"

oWy

) ‘

o %5 B

) Koo, ;
iy, . o B 5o G ] :
B

&

%

)

%Y

ot

!t

'y

$ Figure 9. Scheme A type 5 sump, type 1 riprap
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Gravity control Ei:
24, The approach to the Scheme A type 1 gravity flow outlet is shown in :E
Figure 6. A self-regulating tainter gate (autogate) (Plate 11) located in the <i}
upper gravity bay was designed to maintain the recreation pool within 3 ft of o
el 421.0, In the prototype, the autogate automatically adjusts its opening ﬁ}
relative to the head on the gate. In the model the autogate was schematically ES;
simulated. The autogate is designed to pass flows as high as 2,000 cfs. When
the pond level exceeds el 424,0, the roller gates (Plate 11) will be opened to \,}
provide flow through the twin 15- by 15-ft conduits in the lower gravity bay. EE
A divider wall was installed in the center of the entrance to the gravity con- i:j
trol structure (Scheme A type 2 gravity control) to provide additional support a
for the bulkheads, and a quadrant wall (Scheme A type 3 gravity control) was ?:
added to provide streamlining (Plates 11 and 12). Eﬁ_
25. A discharge rating curve for free-flow conditions and with the :‘
roller gates open to el 421.0 is shown in Figure 10. The rating curve indi- :i
cates that with the roller gates open to el 421,0, the structure will not pass 3;
the design discharge of 15,000 cfs with pool at el 432.0. Flow with the rol- ;
ler gates open to el 421.0 generated severe turbulence (Plate 13) that sig- 5%
nificantly reduced the hydraulic capacity of the structure. A representative !%
of the Louisville District stated that the structure could be operated with *q,
ot

the roller gates opened to el 405.0.
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:\VE 26. The roller gates were opened to el 405.0 and flow conditions (dis~
S charge Q of 15,000 cfs) were observed as shown in Plate 11. The capacity of
f ’ the structure was significantly increased as indicated by the rating curve in
5":; Figure 10. The increased capacity was attributed to reduction of turbulence
. :: inside the structure (compare Plates 11 and 13). An occasional air-entraining
f:g: vortex occurred at the inlet as shown in Plate 12 and Figure 10. Figure 10
1 )> shows a range of discharges where stage D and E vortices occurred. The occa~
g$(: sional vortices did not cause any significant problems, and flow characteris~
ﬂ& tics throughout the Scheme A type 3 gravity control structure appeared satis-
“,':::l: factory for the range of anticipated flows.

27. A plot of heads on the center line of the culverts versus discharge
;j\: coefficients for the structure with the roller gates open to el 405.0 is shown
qﬁzi in Figure 11. Basic free-flow data obtained with the model are tabulated in
q;:; Table 3. Various approach flow conditions taken with a 50-sec (prototype)

' exposure time are shown in Photo 3. The magnitude of currents approaching the
‘:?j gravity flow intake along the approach training wall for the maximum gravity
= flow of 15,000 cfs and pool at el 428.0 is shown in Plate 10.

LZ:; 28. Tests conducted to investigate the feasibility of removing the por-
T tion of the divider wall located between the gravity flow conduits (the shaded
i:é: area in Plate 12) indicated that the downstream portion of the wall is needed
':3: to direct the flow and minimize turbulence. Flow with the divider wall in-
{?ﬁ stalled is shown in Photo 4. Submerged flow with a discharge of 15,000 cfs

) through the lower gravity bay generated turbulence and waves 1 ft high near
“f% the autogate (Photo 5). Although the turbulence and waves were considered
S nondamaging, the Louisville District requested that the autogate be moved up-
K i stream of the roller gates tc provide better access for maintenance and opera-
ﬁ. i tion. The model results indicated that moving the autogate upstream of the
,"‘: roller gate would not adversely affect the hydraulic performance of the struc-
;;& ture. A discharge of 2,000 cfs passing‘through the upper gravity bay is shown
:fi in Photo 6. - _J

9. Riprap

75? 29. The Scheme A type 1 riprap (d50 = 6 in.) in the approach (Figure 9)
3$§ failed from the intake to a point 20 ft upstream as shown in Plate 14 when

:,: subjected to a gravity flow of 15,000 cfs. Turbulence associated with the

”&. bottom roller and vortices generated by the abutments, shown in Plate 12,
ggb caused the riprap to fail, The riprap thickness was increased to 50 in. with
a
oy 18




t 40r

LFT

30r—

25 -

20}—

HEAD ON EOF 16 -FT ~SQUARE INTAKES H

- | |

0.5 0.6 0.7 0.8

FREE~FLOW DISCHARGE COEFFICIENT C

L)

0:;:' NOTE: Q=CA 2gH

Q = DISCHARGE, CFS

- A = AREA OF CULVERTS, FT2

- . g = ACCELERATION DUE TO GRAVITY, FT/SEC2
L5 H = HEAD ON ¢ OF 15-FT-SQUARE INTAKES
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i Figure 11, Scheme A type 3 gravity control
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');: a dSO of 25 in, for a distance of 20 ft upstream from the structure
gi? (Scheme A type 2 riprap). Rock failure occurred from the intake to a point
{ about 5 ft upstream. Therefore, it was recommended that the full width of
i\; approach to the gravity flow section be paved with concrete for 20 ft upstream
‘;; of the entrance. The 12-in. thickness was adequate upstream from this
A5 location.
L)
}f\ Scheme B
R
~$S 30. Value engineering studies by the Louisville District indicated that
N it would be cost effective to reduce the number of pumps from six to four. The
,\2 1:20-scale model was revised to simulate Scheme B, which contained four
‘ER 1,025-cfs pumps with a gravity flow section located in the center (Plate 15).
faa The gravity flow outlet was not changed.
C u 31. The magnitudes and directions of currents measured 1 ft above the
':3 bottom of the approach and the sump with various pumps operating are shown in
v Plates 16-19. Only minor flow contractions were observed at the pier noses.
33 Rotational flow tendencies (swirl) and stages of vortex development are pre-
‘ sented in Table 4. Submerged or surface air-entraining vortices were not ob-
%} served, Only occasional surface swirls or depressions (stage A vortex) were
:&S observed with the minimum water~surface elevation.
;5& 32. Performance of the Scheme B sump was considered satisfactory for
) the range of anticipated water-surface elevations with any single pump or com-
jﬁ? bination of pumps operating.
o
:‘: Scheme C (Adopted Design)
L]
:a; 33. Engineers from the Louisville District decided, based on additional
§3 value engineering studies, that a single tainter gate having the same width as
gg the gravity bay (34 ft) with the invert of the gravity bay at el 390.0 would
8 increase the capacity ot the gravity flow and reduce the structural costs.
'i; Also, the length of the pump bays was reduced to 54 ft. The model was revised
:E; to simulate the Scheme C design, which contained four 1,025-cfs pumps with a
yj- tainter-gate-controlled gravity flow section located in the center bav
i - (Figure 12 and Plate 20).
R
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Figure 12. View from upstream, Scheme C

Sump

34, Based on test results obtained from a general research study of
sump performance conducted at WES,* a pump and vortex suppressor beam were
located in each bay of the sump as shown in Figure 13. Results from the gen-
eral research indicated that the pump location shown in Figure 13 was the
least susceptible to submerged vortices, and the vortex suppressor beams would
eliminate surface vortices.

35, The magnitudes and directions of currents measured 1 ft above the
bottom with various pumps operating are shown in Plates 21-25. Various
approach flows are shown in Photo 7. For some flow conditions, flow contrac-
tions observed at the abutments and pier noses induced unevenly distributed
currencs as flow entered the bays. As flow passed through the bays and ap-

proached the pump intakes, currents became more evenly distributed. Pressure

Y YIS Y N Y

fluctuations beneath the pumps, rotational flow tendencies (swirl), and stages

* (Glenn R. Triplett, Bobbv P. Fletcher, John L. Grace, John J. Robertson.
1988 (Feb). '"Pumping Station Inflow-Discharge Hydraulics, Generalized Pump
Sump Research Study," Technical Report HL-88-2, US Army Engineer Waterwavs
Fxperiment Station, Vicksburg, Miss.
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Y suction bell
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of vortex development are presented in Taole 5. Virtually no surface vortices

(none worse than stage A) occurred when vortex suppressor beams were in place.
Removal of the vortex suppressors resulted in stage D and E vortices in all
pumping bays. Pressure fluctuations below the center line of the pump intake
and swirl inside the pump column were insignificant in all instances. No sub-
merged vortices occurred for any condition.

36. The suction bell diameter was increased from 13 ft (type 1) to
16 fr (type 2). The Scheme C sump with the 16-ft-diam type 2 suction bell is
shown in Figure 14. Tests were conducted for all anticipated water-surface
elevations in the sump and for all possible combinations of single and multi-
ple pump operation. Test results indicated that for all conditions, hvdraulic
performance in the approach and sump was satisfactory and almost identical to
that documented with the 13-ft-diam suction bell installed.

Gravity control

37. The gravity flow control structure (Plate 20) was evaluated for
discharges up to the design discharge of 17,000 cfs. Approach flows were
satisfactorv and are shown in Photos 8 and 9. Approach velocities measured
near the bottom are provided in Plate 20.

38. Coutrolled flow. Observations indicated that an air-entraining

vortex developed upstream and on each side of the tainter gate (Plate 26 and
Photo 10) for all controll.d flows greater than 1,300 cfs. Development of the
vortices appeared to be initiated by flow contraction at each abutment. The
vortex at the right abutment (looking downstream) was usually stronger than
the vortex at the left abutment. This was probably due to the lower elevation
of the topography in the approach on the right side which permitted more flow
to approach the structure laterally from the right and caused more flow con-
traction at the right abutment. Various heights (2, 3, 5, and 7 ft) of vortex
suppressor beams were installed at various locaticns upstream from the tainter
gate. The most effective beam (typ: 2 gravity flow) was 5 ft high and was
located &4 ft downstream from the nose of the abutment (Figure 15). The beam
eliminated all air-entraining vortices for all anticipated flow conditions.
Some flow conditions allowed an eddy to form on each side immediately upstream
from the vortex suppressor beam (Figure 15). The eddies were eliminated by
providing a transition (fillet) from the pier nose to the beam (type 3 gravity
flow) as shown in Figure 16.

39. The type 3 gravity flow control structure performed satisfactorily
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for all controlled flows (submerged and unsubmerged) but was unsatisfactory

for uncontrolled flows above 15,000 cfs. With uncontrolled flows above

15,000 cfs the vortex suppressor intersected the nappe as shown in Figure 17.
The vortex suppressor beam was moved downstream to a position where the beam
did not interfere with uncontrolled flow. However, moving the beam downstream

reduced its effectiveness in preventing vortices.

- 52’ .
VORTEX 4
SUPPRESSOR [ ’|
BEAM\
EL 425 |
—¥— EL 420
—1-
> T~ =
— - —
—a T~ ~, — >~ .
T~ ——— —_—
T e — —_— — —_——
SECTION A-A
Figure 17. Uncontrolled flow, Scheme C type 3 gravity

control

40.

10 ft downstream (type 4) as shown in Figure 18,

The vortex suppressor was removed and the tainter gate was moved
Moving the tainter gate

10 ft downstream reduced the frequency and intensity of the vortices

52’ 10°

EL 421.0
=222~
/N
!
! !
Y o
by
eL3900 \ ¥~
17 10°
Figure 18. Scheme C type 4 gravity con-

trol, tainter gate moved 10 ft downstream
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:: (Photo 11). There was no random or periodic surging of flow on the upstream
':E side of the gate. Tests indicated that the vortex suppressor beam and fillets
"’ were needed to eliminate the vortices. Various positioned and sized vortex

: ; suppressor beams with fillets were investigated, and the model results indi-~
*\3 cated that a 5-ft-high beam with fillets located 7 ft downstream from the nose
;Qd of the abutments (type 5) (Figure 19 and Photo 12) provided satisfactory per-
N formance for all anticipated controlled flow conditions. The vortex suppres-
‘;{ sor beam was also effective in preventing floating debris from passing through
.~: the structure with gate openings less than 5 ft, Higher gate openings per-
N mitted flow to pull the debris beneath the vortex suppressor beam (Photo 13).
* 41, Controlled flow rating curves are plotted in Figure 20. Basic dis-
_wt charge calibration data obtained with the model are tabulated in Table 6. An
;ES equation for free controlled flow was developed by plotting discharge versus
’ﬁi head on the center of the gate opening (Figure 21) and then plotting the
']; values of Cg versus gate opening as shown in Figure 22. The following equa-
_tﬁ tion describes the relations between discharge Q , length of gate L , gate
fii opening Go ,» and head on the center of the gate opening Hg ’
™
C Q = 0.8661G" "7 (2gng>°'5 )
:{Q

EE: where g 1is the acceleration due to gravity. Controlled flows entering the
Nj Scheme C type 5 gravity flow bay were considered satisfactory for all antici-
;5; pated operating conditions,

:;: 42. Uncontrolled flow. With the design uncontrolled discharge of

.;g 17,000 cfs, the gravity flow control structure produced flow contractions that
‘} induced a water-surface drawdown of 4 ft (vertical) at each abutment (Photo 14
5 and Plate 27). Water-surface profiles along the sidewall and center line of

} z the gravity flow control structure measured with the design discharge- of

;ﬂh 17,000 cfs and headwater and tailwater at el 422,0 and 414.5, respectively,

M

are shown in Plate 27. Flow control occurred at the entrance of the struc-
ture. Discharge rating curves for the gravity flow control structure are pro-
vided in Figures 20 and 23. The following equation can be used to compute

discharge with uncontrolled free flow.

Hi‘l,;s"x,s..-

) q = 2.091a. >’ (2)
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Figure 22. Cg versus gate opening, controlled flow, Scheme C

type 5 gravity flow
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Figure 23, Discharge-head relation for free uncontrolled
flow, Scheme C type 5 gravity flow
‘where He is the gross head on the weir. Basic discharge data obtained with
the model are tabulated in Table 6. Uncontrolled flows entering the gravity
flow control structure were considered satisfactory for all anticipated dis-
charges.

Stilling basin

43. A tailwater rating curve provided by the Louisville District is
shown in Figure 24. This curve was used to set the tailwater elevations for
various discharges during tests of the stilling basin. The baffle blocks of
the Scheme C type | design stilling basin (Plate 28) did not provide suffi-
cient resistance and permitted an unstable and oblique hydraulic jump on the

surface with eddies in the stilling basin at a discharge of 17,000 cfs
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o~y

g,
f" (uncontrolled flow) and minimum tailwater at el 412.5 (Plate 28). Discharges
;";" from 3,000 to 17,000 cfs (uncontrolled and controlled) induced flow separation
,%g along the sidewalls in the flared sectlon and generated eddies in the stilling
3::, basin (Plate 28) due to the unstable and oblique hydraulic jump induced in the
e

’)’ chute upstream of the stilling basin.

;:"' 44. The baffle blocks were increased in height from 4 to 10 ft

\':‘ (Scheme C type 2 stilling basin) as shown in Plate 29, This provided more re-
?‘:{ sistance and stability for the hydraulic jump and reduced, but did not elimi-
-

- nate, the eddy action. The rate of sidewall flare was decreased from 1V on 3H
.:‘;;.:. to 1V on 5.5H (type 3 design stilling basin) and 1V on 10H (type 4 design

':l:: stilling basin) as shown in Plates 30 and 31, respectively. The model indi-
Wy

:‘ y cated that both 1V on 5.5H and 1V on 10H sidewall flares reduced the tendency
i for flow separation along the sidewalls and formation of eddies in the still-
* Y

MRS ing basin. However, for some flow conditions, there were tendencies for an
‘F:j: unstable and oblique hydraulic jump to form on the surface in the chute up-
';;::'- stream of the stilling basin, uneven flow distribution, and occasional adverse
AN

[ @ eddies in the stilling basin. The parabolic drop and stilling basin baffles
'..: were moved upstream (type 5 design stilling basin shown in Plate 32), and
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satisfactory hydraulic performance was observed for all anticipated flow con-

ditions. However, the type 5 design stilling basin was considered unsatis-
factory by the Louisville District due to increased construction costs.

45, The tvpe 6 design stilling basin, which was the design adopted for
use, was formed by sloping the invert of the chute from el 390.0 to 386.0 and
locating the 10-ft-high baffles 55 ft from the toe of the slope as shown in
Plate 33. The baffles were located various distances from the toe of the
slope, and a distance of 55 ft provided the best hydraulic performance. Cur-
rent patterns, maximum wave amplitude, and bottom velocities are also shown in
Plate 33. The type 6 design stilling basin provided a stable hydraulic jump
and prevented the formation of adverse eddies in the stilling basin. Various
flow conditions are shown in Photo 15. The pier in the middle of the gravity
section (Photo 15) generates turbulence which is dissipated in the stilling
basin.

Riprap

46. Approach channel riprap (Figure 12 and Plate 20) with a dSO of
6 in. upstream from a 20-ft paved section as developed with Scheme A was
stable for all pumped or gravity flow discharges including the design gravity
flow of 17,000 cfs.

47. Exit channel riprap with a of 6 in. failed from the end of

d
the stilling basin to a point 10 ft downzgream during a discharge of

17,000 cfs and tailwater at el 412.5. The type 2 design riprap was composed
of stone with a dSO of 8 in. for a distance of 25 ft downstream from the
stilling basin (Plate 33), followed with stone having a d50 of 6 in. No
failure of the type 2 design riprap was observed after it was subjected to
anticipated flows as great as 17,000 cfs and tailwater at el 412.5 for a

period of 2 hr (prototype).
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PART IV: DISCUSSION AND CONCLUSIONS

48, Initially, the sump and the gravity flow outlet were designed to be
separate structures. Model tests indicated satisfactory sump performance dur-
ing operation of anv combination of the five pumps. However, the gravity con-
trol structure required an expensive wing wall design to prevent vortices in
the approach during major floods.

49. The sump and gravity control structures were combined by locating
the gravity control below the sump (Scheme A, Photo 1). During operation of
the pumps, unsymmetrical current distribution in the approach induced several
surface vortices in the sump. A false backwall and a vortex suppressor beam
were effective in eliminating surface vortices. A pier located in the cc..ter
of each pump bay for structural purposes did not adversely affect sump
performance.

50. The Scheme A ¢ravity flow outlet was located below the sump and
included a self-regulating tainter gate (autogate) designed to maintain the
recreation pocol within 3 ft of pool el 421.0 (Plate l1). When the pool level
exceeded el 424.0, the roller gates were opened, providing twin 15- by 15-ft
conduits. Submerged flow through the gravity bay generated turbulence and
waves 1 ft high near the autogate. The autogate was moved upstream of the
roller gates to provide better access for maintenance and operation.

51. Subsequent value engineering studies by the Louisville District
indicated that it would be cost effective to reduce the number of pumps from
six to four (Scheme B). The gravity flow outlet was not changed and the
hydraulic performance of the gravity flow outlet was not affected. Perfor-
mance of the Scheme B sump was considered satisfactory.

52. Engineers from the Louisville District decided, based on additional
value engineering studies, that a single tainter gate (Scheme C, the adopted
design, shown in Plate 20) would increase the capacity of the gravity flow and
reduce the structural costs. The total pumping capacity of the Scheme C de-
sign remained 4,100 cfs and the capacity of the gravity bay was increased to
17,000 cfs. The Scheme C sump performed satisfactorily for any combination of
p' mps operating and anticipated flow conditions.

53. Approach flows to the Scheme C gravity control were satisfactory.
For all controlled flows greater than 1,300 cfs, an air-entraining surface

vortex developed upstream and on each side of the tainter gate. The vortices
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;\;: were eliminated by a vortex suppressor beam located upstream from the tainter
k:&: gate. The vortex suppressor beam was also effective in preventing floating
R debris from passing through the structure with gate openings less than 5 ft.
P Higher gate openings permitted flow to pull the debris heneath the beam. Con-
:ﬁ} trolled and uncontrolled discharge rating curves were developed from the

.Z;: model.

:-\ 54. The initial design of the Scheme C stilling basin permitted an

}‘i unstable and oblique hydraulic jump in the stilling basin at a discharge of

) iﬁ 17,000 cfs. Discharges from 3,000 to 17,000 cfs (uncontrolled ard controlled)
~:§ induced flow separation along the sidewalls in the flared section and gener-
SB ated eddies in the stilling basin. Increasing the baffle block height from 4
:t’: to 10 ft provided more resistance and stability for the hydraulic jump but did
:i: not eliminate all eddy action. Satisfactory stilling basin performance was
R;: obtained by decreasing the rate of sidewall flare, sloping the invert of the
:? chute from the outlet to the stilling basin apron, and locating the 10-ft-high
O baffles 55 ft from the toe of the slope (Scheme C type 6 stilling basin, shown
;ti: in Plate 33). Riprap in the exit channel was stable for all anticipated flow

ce.ditions.,
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Table 1

Pressure Fluctuation, Swirl, and Stages of Vortex Development

Scheme A Type 1 Sump

Water-
Surface Sump Performance Pump No.
El Tndicator* 1 2 3 4 5 6
421.0 Pressure fluctuation, ft 1.0 X X X X X
Swirl, rpm 1.0«
Stage of vortex development (E)
421.0 Pressure fluctuation, ft X X 2.0 1.5 X X
Swirl, rpm 1.0« 1.0~
Stage of vortex development (D) )
421.0 Pressure fluctuation, ft X X X 5.0 2.0 2.0
Swirl, rpm 6.0« 1,0« 2.0»
Stage of vortex development (B) (9] (D)
421.0 Pressure fluctuation, ft 1.0 1.0 5.0 X X X
Swirl, rpm 1.0« 2.0+ 7.0~
Stage of vortex development (D) (C) (B)
421.0 Pressure fluctuation, ft 1.0 1.0 1.0 1.0 1.0 1.0
Swirl, rpm 2.0« 1.0 1,0 1.0« 1.0« 1.0«
Stage of vortex development  (B) (D) (D) (D) ™ (E)
426.0 Pressure fluctuation, ft X X X 2.0 1.0 1.0
Swirl, rpm 7.0« 1.0« 2.0>
Stage of vortex development (A) (A) (A)
426.0 Pressure fluctuation, ft 1.0 1.0 1.0 1.0 1.0 1.0
Swirl, rpm 1.0 1.0« 1.0¢ 1,0~ 1,0~ 1.0~
Stage of vortex development (A) (A) (A) (A) (A) (A)
432.0 Pressure fluctuation, ft X X X 2.0 1.0 1.0
Swirl, rpm 4,0« 1.0« 2,0«
Stage of vortex development (a) (A) (A)
432.0 Pressure fluctuation, ft X X X 1.0 X X
Swirl, rpm 1.0~
Stage of vortex development (A)
432.,0 Pressure fluctuation, ft 1.0 1.0 1.0 1.0 .0 1.0
Swirl, rpm 1.0 1,0~> 1.0+ 1.0« 1.0« 1.0~
Stage of vortex development (A) (A) a) (A) (A) (A)
Note: All magnitudes are expressed in terms of prototype equivalents.
+ = clockwise rotation.
« = counterclockwise rotation,
X = pump not operating.

Discharge for pumps 1 and 6 =

= 820 cfs each.

Pressure fluctuations beneath the pump intake are given in feet of
water,

410 cfs each;

Nk y L > 21 N2 oL 3 ] ) N
A e e AR N A O S SR R T L S O

for pumps 2,

3, 4, and 5
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: Table 2
;3} Pressure Fluctuation, Swirl, and Stages of Vortex Development
;fﬁ' Scheme A Type 4 Sump
{
.
"
f':a Water-
J"‘: Surface Sump Performance Pump No.
.-:;;- EL Indicator* 1 2 3 4 5 6
A
Y < 421.0 Pressure fluctuation, ft 1.0 X X X X X
\ D) Swirl, rpm 1.0«
\:x Stage of vortex development (B)
AN
.
a::: 421.0 Pressure fluctuation, ft X X 1.0 1.0 X X
N Swirl, rpm 1.0« 1.0~
Oht Stage of vortex development (4) (B)
] 421.0 Pressure fluctuation, ft X X X 2.0 1.0 1.0
<y swirl, rpm 3.0¢ 2.0 1.0+
.Qy Stage of vortex development (B) (A) (B)
L)
k b 421.0 Pressure fluctuation, ft 1.0 1.0 1.0 X X X
L J Swirl, rpm 2.0«  2.0» 3.0+
e Stage of vortex development (A) (a) (B)
i 421.0  Pressure fluctuation, ft 1.0 1.0 1.0 1.0 2.0 1.0
SO Swirl, rpm 1.0¢ 1.0» 1.0 1.0« 1.0« 1.0»
T Stage of vortex development (A) (4a) (A) (4) (A) (A)
€
et 426.0 Pressure fluctuation, ft X X X 1.0 1.0 1.0
- Swirl, rpm 1.0« 1.0« 1.0+
'f;; Stage of vortex development (a) (4) (A)
T
-
[ 426.0 Pressure fluctuation, ft 1.0 1.0 1.0 1.0 1.0 1.0
D) Swirl, rpm 1.0~» 1.0~ 1.0+« 1.0« 1.0« 1.0~
'y Stage of vortex development (A) (A) (A) (A) (A) (A)
ey
oy
sy 432.,0 Pressure fluctuation, ft X X 1.0 1.0 1.0 1.0
ﬁ@ Swirl, rpm 2.0« 1.0« 2.0+
Y Stage of vortex development NI Y]
@
N 0 432.0 Pressure fluctuation, ft X X X 1.0 X X
ij Swirl, rpm 1.0+
& Stage of vortex development (A)
a};;
e 432.0 Pressure fluctuation, ft 1.0 1.0 1.0 1.0 1.0 1.0
9.- Swirl, rpm 1.0« 1.0 1.0« 1.0« 1.0« 1.0«
o Stage of vortex development  (A) (A) (A) (A) (A (&)
SN,
?}j Note: All magnitudes are expressed in terms of prototype equivalents.
L + = clockwise rotation.
‘. « = counterclockwise rotation.
oor X = pump not operating.
BV, Discharge for pumps 1 and 6 = 410 cfs each; for pumps 2, 3, 4, and 5
R = 820 cfs each
i ] b .
Sl * Pressure fluctuations beneath the pump intake are given in feet of
water.
P P N o

~
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Table 3

Basic Free-Flow Data

Scheme A Type 3 Gravity Flow

Bulkhead Open

Discharge
cfs

C 3,300
\ 4,200

5,500
! 6,200
7,000
& 7,300
j 7,900
8,400
9,000
10,000
11,200
11,500
11,700
12,100
p 12,200
12,600

e e e,

Pool El1

400.0
404.1
403.5
405.6
406.8
409.6
413.0
413.8
417.0
417.5
421.0
423.2
425.4
429.7
430.9
432.6

Bulkhead Closed

D

ischarge

cfs Pool El
8,400 412,1
10,000 416.8
11,500 419.3
12,600 424 .1
14,000 426.0
15,100 430.0
15,300 428.2
15,900 432.4
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Table &4

fat fa® st das e B ARV S~ Aa oid ik o34 agn-adh oo ot T

Swirl and Stages of Vortex Development

Scheme B Type 1 Sump

Water-
Surface Sump Performance Pump No.
El Indicator 2 3 4
421.0 Swirl, rpm X X X +«2.0
Stage of vortex development (A)
421.,0 Swirl, rpm X X «3.0 «1.0
Stage of vortex development a) (A)
421.0 Swirl, rpm X 1.0+ «2.0 «1.0
Stage of vortex development (A) (A) (A)
421.0 Swirl, rpm 1.0~ 2.0»> «2.0 «1.0
Stage of vortex development (A) (A) A) (A)
421.0 Swirl, rpm X 3.0» «2.0 X
Stage of vortex development ¢:9)] (A)
426.,0 Swirl, rpm X X «1.0 «1.0
Stage of vortex development (A) (A)
426.0 Swirl, rpm 1.0+ 1.0» 1.0« 1.0«
Stage of vortex development (A) (A) (A) (A)
432.0 Swirl, rpm X X 1.0+« 1.0«
Stage of vortex development (A) (A)
432.0 Swirl, rpm +1.0 +1.0 +1.0 «1.0
Stage of vortex development (A) (A) (A) (A)
Note: All magnitudes are expressed in terms of prototype equivalents.

»>

clockwise rotation.

+ = counterclockwise rotation.

X = pump not operating,

Discharge per pump = 1,025 cfs.
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¢ Table 5
:- Pressure Fluctuation, Swirl, and Stages of Vortex Development
b
& Scheme C Type 1 Sump
{
| Water-
- Surface Sump Performance Pump No.
N El Indicator* 1 2 3 4
a _
421.0 Pressure fluctuation, ft X X X 1
v Swirl, rpm +>2
‘ Stage of vortex development (A
ot 421.0 Pressure fluctuation, ft X X 1 1
N Swirl, rpm <1 «1
* Stage of vortex development (A) (A)
. 421.0 Pressure fluctuation, ft X 1 1 1
.j Swirl, rpm <1 +2 +2
’ Stage of vortex development (A) (A) (A)
y)
g,
P 421.0 Pressure fluctuation, ft 1 1 1 1
4 Swirl, rpm +1 +1 +1 +2
- Stage of vortex development (A) (A) (a) (A)
R 421.0 Pressure fluctuation, ft X 1 1 X
3 Swirl, rpm >2 2
' Stage of vortex development (4) ()
b, 426.0 Pressure fluctuation, ft X X 1 1
- Swirl, rpm +2 +2
b Stage of vortex development None None
: 426.0 Pressure fluctuation, ft 1 1 1 1
Swirl, rpm >1 <1 +1 +1
\ Stage of vortex development None None None None
R 432.0 Pressure fluctuation, ft X X 1 1
i Swirl, rpm +1 +1
3 Stage of vortex development None None
L)
W 432.0 Pressure fluctuation, ft 1 1 1 1
Swirl, rpm +1 »1 <1 +1
Stage of vortex development None None None None

- —

Note: All magnitudes are expressed in terms of prototype equivalents.
+ = clockwise rotation.
N « = counterclockwise rotation.
) X = pump not operating.
, Discharge per pump = 1,025 cfs.
* Pressure fluctuations beneath the pump Iintake are given in feet of
G water.
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. Table 6
; Gravity Control Calibration Data

Scheme C Type 5 Gravity Flow

Uncontrolled Flow Controlled Flow

! Gate

': Discharge Pool Opening Discharge Pool
Nt cfs El ft cfs El

§ __cfs _ft __cfs

v 2,900 400.5 10 6,560 408.6
;, 3,960 402.6 10 7,570 415.1
y 3,960 402.9 10 8,980 420.5
y 4,500 404 .2 15 10,500 415.3
¥

6,000 407.1 15 11,200 418.8

i: 7,100 408.4 15 11,400 419.9
)

: 8,400 410.5 15 12,200 4244
) 8,900 411.8 15 13,400 426.2
4 10,400 412.6 20 15,000 420.7

11,700 415.8 20 16,100 425.5

: 11,800 416.4 20 17,400 429.3
4 12,900 416.8
{ 14,200 417.7
R, 16,200 420.2
R~
9 16,400 422.8
i
5 17,400 421.6
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5 discharging 820 cfs, pump 6 discharging
10 ofs

currents, Scheme A tupe 5 sump, expoesure tive
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- c. Pool el 421.0, pumps 2 and 3 operating, discharge per pump
) 1,025 cfs
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d. Pool el 421.0, pumps 2, 3, and 4 operating, discharge per pump
1,025 cfs
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b. Discharge 4,750 cfs, gate opening 5 ft, pool el 426.0,
tailwater el 401.7

Pheto 15,  Scheme € tvpe 6 stilling basin (Continued)
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c. Discharge 13,100 cfs, gate opening 15 ft, pool el 426.0,
tailwater el 401.7

1. Liacharee 7,000 cfs, uncontrolled flow, pool el 421,45,
tailwater el 412.°5

Phote 15, {Concludedd
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